
 JAGUAR: TIME SHIFTING AIR TRAFFIC SCENARIOS USING A GENETIC ALGORITHM
Bryan Petzinger, Federal Aviation Administration, Atlantic City Int’l Airport, NJ 08405

Robert Oaks, General Dynamics Information Technology, Mays Landing, NJ 08330

Nicole Nelson, Federal Aviation Administration, Atlantic City Int’l Airport, NJ 08405

Abstract

This paper describes the redesign of the Federal

Aviation Administration’s implementation of a

genetic algorithm used for time shifting flights in air

traffic scenarios. Time shifted scenarios are used in

testing decision support tools that predict the

potential loss of separation between aircraft. This

paper describes the improvements that resulted when

this application was redesigned and coded in Java.

The improvements described in this paper include the

following:

• Maintainability improved as a result of a modular

design using object-oriented techniques.

• Usability improved as a result of more efficient

logging techniques, configuration methods, and

user interfaces.

• Quality of the solution improved as a result of a

more accurate method for calculating of aircraft-

to-aircraft conflicts.

• Timeliness for obtaining a solution improved as a

result of using modern software engineering

techniques, such as distributing the fitness

function across multiple processors and caching

fitness scores.

Introduction

A conflict probe is a decision support tool used

by air traffic controllers to predict aircraft-to-aircraft

conflicts
1
. Air traffic scenarios based on recorded live

data are essential for the development, testing, and

evaluation of a conflict probe. When analysts create

these scenarios it is necessary to modify the recorded

1 A conflict is a situation in which a pair of aircraft fails to have

the separation standards administered by the Federal Aviation

Administration. These standards are typically five nautical miles

horizontally and 1000 or 2000 feet vertically, depending on the

aircraft’s navigational equipment.

data in order to introduce conflicts and encounters
2

that do not exist in the live data.

In order to control the characteristics of the

conflicts and encounters introduced into a modified

air traffic scenario, the Federal Aviation

Administration developed a software application that

uses a genetic algorithm
3

 (GA) to time shift

individual flights in the scenario so that the

distribution of aircraft-to-aircraft conflicts and

encounters meets user-defined constraints.

Figure 1. Time Shifting

Figure 1 graphically depicts time shifting. This

figure shows the recorded timeline for a flight

containing a flight plan (denoted FP) and a number of

track points (denoted Tk0, Tk1, … , Tkn). This

timeline could contain other information such as

flight plan amendments, interim altitude messages,

etc. The figure also shows a modified timeline with

the flight’s events shifted in time by a single flight

specific value (denoted in the figure as

flight.delta_time).

2 An encounter is a situation used by analysts for evaluation

purposes and may be defined as a situation in which a pair of

aircraft come within a defined separation distance, typically 25 to

30 nautical miles horizontally and 4000 to 5000 feet vertically.
3 A genetic algorithm is a search heuristic that mimics the process

of natural evolution. The developers used [1], [2], [3], and [4] for

this implementation.

FP Tk
0

Tk
1

Tk
2

. . .Tk
n

flight.start_time
Recorded

timeline

flight.start_time + flight.delta_time

FP Tk
0

Tk
1

Tk
2

Tk
n

. . .

Modified

timeline

flight.delta_time

In order for analysts to study the efficiency and

accuracy of conflict probe tools used in the air traffic

environment, it is necessary for scenarios to contain

conflicts and encounters. These events do not occur

often in recorded traffic data because air traffic

controllers already resolved potential conflicts before

they take place. The purpose of time shifting flight

data in a scenario is to create time overlap of flights

flying at similar routes. This will likely generate

conflicts and encounters in the altered scenario data.

The Original Implementation - Cat

The developers implemented the GA as an

application (called Cat) in 2002 using the Oracle®

Pro*C/C++ Precompiler, which is a programming

tool that enables the user to embed SQL
4
 statements

in a high level programming language, and the GNU
5

g++ compiler, which is a *nix-based
6
 C++ compiler.

Although this is an Object-Oriented programming

language, this implementation utilized only a few

Object Oriented Design features and Cat was

essentially a C program compiled on a C++ compiler.

The developers initially used this implementation to

determine whether a GA could solve the problem in a

reasonable amount of time [5]. The developers then

interfaced the application with existing tools and

processes [6][7].

For a given problem, a GA requires a

chromosome, (i.e, a potential solution that can be

encoded as a bit stream) and a population (i.e, a

number of potential solutions). As implemented for

this problem, the GA defines a potential solution as a

sequence of integer times that can be represented by

the tuple:

>∆∆∆< nttt ,..., 21

Each delta time in the tuple represents the flight

specific time shift value for each flight in the

scenario. A number of these potential solutions

comprise the GA’s population.

4 SQL is an acronym for Structured Query Language, a

programming language for managing data in relational database

management systems.
5 GNU is a recursive acronym for “GNU’s Not Unix!” See

http://www.gnu.org/.
6 *-nix refers to indicate all operating systems similar to Unix;

specifically in this case any Linux operating system.

A GA also requires a fitness function. For this,

the developers designed a function that returns a

value between 0.0 and 1.0 representing how well the

potential solution solves the problem. The developers

designed this function so that a value of 1.0

represents a solution that meets all of the constraint

bounds. The original application implemented this

fitness function using socket programming

techniques so that the evaluation of the fitness of

each potential solution was multi-processed. See [8]

for a detailed description of these techniques.

The developers modified the original application

in 2008 to eliminate the embedded SQL so that it

could input its data in flat files
7
. This was done to

eliminate the application’s dependence on the

Oracle® Pro*C/C++ Precompiler.

Although analysts have successfully used this

application for many years, the number of iterations

required for the GA to reach an acceptable solution

has increased dramatically. This has been due to (1)

the use of larger scenarios containing more flights

over longer time periods, which caused the search

space to grow, and (2) the addition of new constraints

and the tightening of existing constraints, which

caused the solution space to shrink. Additionally the

procedural nature of the implementation was not

conducive to adaptation and resulted in

improvements greatly increasing the complexity of

the code.

The Island Model – Cat Distributed

Eventually the decision was made to re-

implement Cat with a modular design, distributed

fitness function, and several optimizations that would

not be feasible to add to the original implementation.

During the design phase of the re-implementation a

method for distributing Cat was discovered that led

to a prototype, and eventual upgrade of the original

system.

This upgrade (called Cat_dist) provided the

capability to run independently on multiple

computers across the network, and then periodically

share their solution set with each other via a file on a

shared network drive. This process is known as an

7 In the context of this paper, a flat file is an ASCII-formatted file

containing one record per line.

Island Model in a GA context, and is depicted

graphically in Figure 2. Following the evolution

metaphor; an Island Model is an implementation of a

GA where several instances of the GA are run in

parallel, each instance representing an island.

Periodically these islands experience migration, i.e.

the sharing of their solution sets. See [9] for a

description of this interim solution along with a

description of a Design of Experiment performed to

determine the optimum values for many of the GA’s

parameters.

The main benefit provided by the Island Model

is that as the GA explores the solution space it tends

to reach a local optimum, which causes the fitness to

plateau. The stochastic processes in the GA allow the

algorithm to break out of this local optimal

eventually, but it often takes a relatively long time.

The Island Model addresses this by running multiple

instances of the GA in parallel each will typically

plateau at different times. By staggering the times at

which plateaus occur infuses the stagnant population

with a means to break through a fitness plateau [1].

Figure 2. Example of a distributed Cat run

Figure 2 shows an example of five instances of

Cat_dist being run on five workstations with the best

population (denoted Best_pop) being shared on

Workstation 3. The five instances run independently

of each other. Periodically each instance compares its

current population with the saved best population. If

the saved best population is better than the local

population the best solution is copied and vice versa.

This upgrade prolonged the utility of the original

application, but the developers desired a more robust

and extensible solution using modern object-oriented

design techniques [10].

The Reimplementation – Jaguar

The improvements implemented in the

reimplementation include:

• Maintainability of the application by using a

modular design based on object-oriented

techniques,

• Usability of the application with implementation

of more efficient logging techniques,

configuration methods, and user interfaces,

• Quality of the solution with the use of a more

accurate method for the calculation of aircraft-to-

aircraft conflict rather than approximation, and

• Timeliness for obtaining a solution through

optimizations such as caching fitness scores and

filter flight pairs as well as distributing the fitness

function across multiple processors.

Figure 3. Overall Jaguar Flow

Figure 3 depicts the flow of the program

implementation. The program begins with recorded

flight data as input. The data is then passed through a

filtering process to reduce the search space. The

filtering process is discussed in detail later in this

paper.

The GA generates delta time values for each

flight in the scenario. Delta times for the first

generation are either supplied as input to the program

by the user, or randomly generated. Subsequent

generations are created from the current generation

using processes designed to mimic evolution. Each

generation is evaluated by a fitness function, which

rates how well each individual in the population

solves the problem. An individual is considered a

solution if it meets some minimum fitness value,

defined by the user. If a solution has been found, the

application returns the solution and exits. If a solution

has not been identified, the GA is run on the new

population.

Jaguar uses the same overall process used by Cat

as it has proven to be effective in practice; the

implementation differences result in a better, more

modular design and specific optimizations and

performance enhancements. These improvements are

extensive enough that it was more practical to rewrite

the code from scratch, rather than trying to modify

the original code.

Watchmaker Framework

Jaguar uses The Watchmaker Framework
8

,

which is open source software that provides an

extensible, high-performance, object-oriented

framework for implementing platform-independent

evolutionary/genetic algorithms in Java. Watchmaker

provides a solid foundation for implementing the GA

with a set of modular components.

Conflict Probe

 The fitness function is the component of the GA

which evaluates a given solution and assigns it a

value in the range 0.0-1.0. The fitness function used

by Cat and Jaguar evaluates a solution by modifying

the tracks of each flight in a scenario by the time shift

value specific to that flight. The resulting conflict and

encounter properties are evaluated and compared

against the user defined constraints.

8 See http://watchmaker.uncommons.org/

 The evaluation of conflict and encounter

properties is known as a Conflict Probe (CP). The

accuracy of the CP is directly responsible for the

accuracy of the solution generated by Jaguar.

 Implementation of a CP is non-trivial and as a

result the CP used by Cat is a simple approximation

of what is used in the field. A key advantage of the

modular design of Jaguar is the use of a much more

accurate CP that was developed in-house for analysis.

The in-house algorithm, Track Conflict Probe (TCP),

results in higher quality solutions generated by

Jaguar in comparison to Cat.

 A drawback to utilizing the improved CP is the

increase in amount of time to run. Therefore, making

performance optimizations and enhancements to

Jaguar are even more important to compensate for

the extra time spent determining aircraft-to-aircraft

conflicts and encounters.

 Both the approximation used by Cat and the in-

house algorithm used by Jaguar determine

encounters and conflicts through flight by flight

comparison. When determining encounters and

conflicts for a unique flight pair, calculations are

performed on a set of track points, paired by their

common track time.

 The calculations performed on a set of track

points are based on the distance of the two aircraft at

the current track time in comparison to the separation

parameters. These same calculations are performed in

both the approximation and TCP; determining the

distance vertically and laterally.

 The difference between the two implementations

lies in what the algorithms do when they find a track

point that is within the separation parameters

representing an encounter or conflict, respectively.

The approximation keeps track of the total number of

points for an aircraft pair that are representative of an

encounter or conflict. However, this logic does not

include the ability to merge conflicts that is applied in

the field. TCP includes the logic to merge conflicts

together, i.e. if two conflicts occur in a close enough

timeframe to each other they become represented by

a single conflict.

 In contrast to merging conflicts together, the

approximation algorithm also does not consider the

case where a single aircraft pair can have multiple

conflicts. Since the approximation simply counts the

number of points in conflict, the points could be

spaced anywhere throughout the time the flights

overlap. TCP stores multiple conflicts when the

points in conflict are outside the window of time to

merge into a single conflict.

 Although the mathematical computations are the

same between the approximation and TCP, the results

of the algorithms vary. The differences between the

algorithms result in different conflict and encounter

counts which skew the results generated by the GA.

Results generated by a suite of in-house tools may

produce a different outcome in terms of encounter

and conflict counts when the approximation is

applied through the execution of Cat. On the

contrary, since Jaguar takes advantage of using TCP,

one of the in-house tools, the GA produces the same

results as later runs of the in-house tools.

Spatial Filter

If the tracks of any two flights are overlaid,

independent of time, and they never violate the

minimum conflict/encounter separation standards,

then no matter how they are time shifted they will not

be affect the conflict/encounter properties of the

scenario. With this in mind, a spatial filter was

created for Jaguar; for each flight a bounding box is

created around each pair of adjacent track points

which represents the minimum conflict/encounter

separation. Flights are then paired, and if their

respective bounding boxes do not intersect the pair is

eliminated from the search space.

Figure 4. Bounding Boxes - a graphical

representation of how the filtering works; bounding

boxes are drawn around each pair of track points for

two tracks, intersections are shown in red.

Cache

Time shifts are relative to a pair of flights, and as

the fitness converges over time the same flight pair-

time shift combinations appear with increasing

frequency. This property led us to implement a cache

for the fitness function, which in effect trades some

memory for increased speed.

Jaguar uses the guava-libraries for compute cache.

This cache is keyed by an object containing two

flights and their relative time offset, mapped to a Java

List. If the key is contained in the map the associated

value is returned, otherwise the value is computed

based on the fitness function and that value is then

stored in cache. The cache has a maximum number of

entries, and entries are expired based on a Least

Recently Used (LRU) eviction strategy, which is a

cache eviction strategy that discards the least recently

used items first.

Distributed Fitness Function

Jaguar uses a Master-Worker architecture where

the GA is run on a Master node which distributes the

fitness function computation to Workers.

Workstation 4

Jaguar -Worker

Workstation 1

Jaguar-Worker

Jaguar-Master

Workstation 2

Jaguar -Worker

Workstation 3

Jaguar-Worker

Workstation 5

Jaguar -Worker

Figure 5. Example of a Jaguar Run

Figure 5 shows an example of a typical Jaguar

run. In this example, the Jaguar-Master is running on

Workstation 1, while five Jaguar-Workers are

running, one on each of the workstations.

Constraints

In the original implementations of Cat, the

constraints were specific and not extensible. In

Jaguar, constraints are reflectively created based on

the class names and parameters defined in an XML-

structured file, which is designed to be flexible. The

constraints follow the Composite Design Pattern so

that they can be constructed in an elaborate tree

structure with different branches weighted differently

or as a basic list by adding all the constraints to a

single composite constraint. Each constraint requires

a constraint target, which allows for different

evaluation strategies. For example, the target can be a

single value or a range of values or it can be a binary

evaluation (i.e, 1 if the target is met, 0 otherwise) or

assigned a value based on a user defined function

(i.e., linear, exponential, etc) difference from the

target.

Conclusion

The Federal Aviation Administration supports

the development of decision support tools (DSTs)

through the implementation of NextGen; providing

new technology to accommodate the growing

demand of air traffic. Analysis of DSTs is conducted

through the use of recorded air traffic data. However,

recorded air traffic data often does not contain

conflicts and encounters because air traffic

controllers have rerouted traffic to avoid such

occurrences.

The goal of this paper is to describe an algorithm

developed by the Federal Aviation Administration

that meets user constraints for occurrences such as

conflicts and encounters. The initial implementation

of the algorithm solved the problem in a timely

fashion until the problem became more complex. At

this point, the large number of iterations required to

find a solution resulted in a redesign. The new

redesign solved the problem of timeliness by

implementing the island model. However, the

problem still existed that the implementation was not

flexible. With flexibility in mind, the team used the

logic of the previous implementations to develop

Jaguar. Jaguar maintains speed but improves the

flexibility, allowing the implementation of new

constraints and concepts.

The future of Jaguar may include shifting air

traffic data in search for different types of

occurrences outside of the current conflict and

encounter implementation. The current

implementation will also undergo thorough solution

time and solutions validation. With the flexibility

implemented in Jaguar the options for application

have grown drastically.

Acronyms

CP Conflict Probe

FP Flight Plan

GA Genetic Algorithm

LRU Least Recently Used

SQL Structured Query Language

TCP Track Conflict Probe

XML Extensible Markup Language

References

[1] Belding, Theodore, 1995, “The Distributed

Genetic Algorithm Revisited,” Proceedings of the

Sixth International Conference on Genetic

Algorithms, San Francisco, CA.

[2] Goldberg, David E., 1989, Genetic Algorithms in

Search, Optimization, and Machine Learning,

Reading, MA, Addison-Wesley.

[3] Michalewicz, Zbigniew. 1996, Genetic

Algorithms + Data Structures = Evolution Programs,

Third, Revised and Extended Edition, New York,

NY, Springer-Verlag.

[4] Mitchell, Melanie, 1996, An Introduction to

Genetic Algorithms, Cambridge, MA, The MIT

Press.

[5] Oaks, Robert D., August 2002, “A Study on the

Feasibility of Using a Genetic Algorithm to Generate

Realistic Air Traffic Scenarios Based on Recorded

Field Data,” AIAA-2002-4767, American Institute of

Aeronautics and Astronautics Guidance, Navigation,

and Control Conference, Monterey, CA.

[6] Oaks, Robert, and Mike Paglione, October 2002,

“Generation of Realistic Air Traffic Scenarios Using

a Genetic Algorithm,” 21
st
 Digital Avionics System

Conference, Irvine, CA.

[7] Paglione, Mike M., Robert D. Oaks, and Karl

Bilimoria, November 2003, “Methodology for

Generating Conflict Scenarios by Time Shifting

Recorded Flight Data,” 3
rd

 Annual Aviation

Technology, Integration, and Operations Technical

Forum, Denver, CO.

[8] Donahoo, Michael J., and Kenneth L. Calvert,

2001, TCP/IP Sockets in C: Practical Guide for

Programmers, San Francisco, CA, Morgan

Kaufmann Publishers.

[9] Petzinger, Bryan, Robert D. Oaks, Mike M.

Paglione, Dr. Christina M. Young, 2011, “Evaluation

of a Genetic Algorithm that Modifies Air Traffic

Data for Conflict Probe Testing,” 30
th
 Digital

Avionics System Conference, Seattle, WA, October.

[10] Freeman, Eric, and Elisabeth Freeman, 2004,

Head First Design Patterns, Sebastopol, CA

O’Reilly Media, Inc.

Email Addresses

Bryan Petzinger – bryan.petzinger@faa.gov

Robert Oaks – robert.oaks@gdit.com

Nicole Nelson – nicole.nelson@faa.gov

31st Digital Avionics Systems Conference

October 14-18, 2012

